Assimilatory sulfur metabolism in marine microorganisms: a novel sulfate transport system in Alteromonas luteo-violaceus.
نویسندگان
چکیده
The sulfate transport mechanism of a marine bacterium, Alteromonas luteo-violaceus, was unique among microorganisms in its extremely low affinity for the sulfate analog thiosulfate. Distinguishing characteristics included weak inhibition of sulfate transport by thiosulfate, inability to transport thiosulfate effectively, poor growth using thiosulfate as the sole source of sulfur, and a mild effect of the sulfhydryl reagent para-hydroxymercuribenzoate. In contrast, sulfate transport by a marine pseudomonad, Pseudomonas halodurans, was strongly inhibited by thiosulfate, and para-hydroxymercuribenzoate reversibly but completely blocked sulfate transport.
منابع مشابه
Assimilatory sulfur metabolism in marine microorganisms: characteristics and regulation of sulfate transport in Pseudomonas halodurans and Alteromonas luteo-violaceus.
Sulfate transport capacity was not regulated by cysteine, methionine, or glutathione in Pseudomonas halodurans, but growth on sulfate or thiosulfate suppressed transport. Subsequent sulfur starvation of cultures grown on all sulfur sources except glutathione stimulated uptake. Only methionine failed to regulate sulfate transport in Alteromonas luteo-violaceus, and sulfur starvation of all cultu...
متن کاملAssimilatory Sulfur Metabolism in Marine Microorganisms: Sulfur Metabolism, Protein Synthesis, and Growth of Alteromonas luteo-violaceus and Pseudomonas halodurans During Perturbed Batch Growth.
The antibiotic protein synthesis inhibitor chloramphenicol specifically blocked the incorporation of [S]sulfate into the residue protein of two marine bacteria, Pseudomonas halodurans and Alteromonas luteo-violaceus. Simultaneous inhibition of total protein synthesis occurred, but incorporation of S into low-molecular-weight organic compounds continued. A. luteo-violaceus rapidly autolyzed, wit...
متن کاملSimultaneous Electricity Generation and Sulfur Removal by Electrogenic Sulfate Reducing Bacteria in BES System
The modern BioElectrochemical technologies can convert the energy stored in the chemical bonds of biodegradable organic materials to renewable electrical energy through the catalytic reactions of microorganisms while treating the waste waters. The present research was conducted to evaluate the efficiency of a single-chamber Bioelectrochemical system with the carbon aerogel catalyst, as a simple...
متن کاملRice Paddy Nitrospirae Carry and Express Genes Related to Sulfate Respiration: Proposal of the New Genus “Candidatus Sulfobium”
Nitrospirae spp. distantly related to thermophilic, sulfate-reducing Thermodesulfovibrio species are regularly observed in environmental surveys of anoxic marine and freshwater habitats. Here we present a metaproteogenomic analysis of Nitrospirae bacterium Nbg-4 as a representative of this clade. Its genome was assembled from replicated metagenomes of rice paddy soil that was used to grow rice ...
متن کاملSulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis
The first step in the sulfate reduction pathway is the transport of sulfate across the cell membrane. This uptake has a major effect on sulfate reduction rates. Much of the information available on sulfate transport was obtained by studies on assimilatory sulfate reduction, where sulfate transporters were identified among several types of protein families. Despite our growing knowledge on the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 147 2 شماره
صفحات -
تاریخ انتشار 1981